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Ill-posed inverse problems, regularization, preconditioning

Linear Ill-Posed Inverse Problem
Consider general problem

b = Ax + η

where

b is known vector (measured data)

x is unknown vector (want to find this)

η is unknown vector (noise)

A is large, ill-conditioned matrix, and generally

large singular values ↔ low frequency singular vectors

small singular values ↔ high frequency singular vectors

ignore noise, and “solve” Ax = b ⇒ A−1b = x + A−1η ≈/ x

inverting smallest singular values amplifies noise
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Ill-posed inverse problems, regularization, preconditioning

Regularization for Ill-Posed Inverse Problems

Solutions to these problems usually formulated as:

min
x
L(x) + λR(x)

where

L is a goodness of fit function (e.g., negative log likelihood)

R is regularization (reconstruct high and damp low frequencies)

λ is regularization parameter
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Ill-posed inverse problems, regularization, preconditioning

Regularization for Ill-Posed Inverse Problems

Solutions to these problems usually formulated as:

min
x
L(x) + λR(x)

where

L is a goodness of fit function (e.g., negative log likelihood)

R is regularization (reconstruct high and damp low frequencies)

λ is regularization parameter

Example: General Tikhonov ⇔ preconditioned standard Tikhonov:

min
x
‖b − AL−1Lx‖2

2 + λ‖Lx‖2
2 ⇔

min
x̃
‖b − Ã x̃‖2

2 + λ‖x̃‖2
2

Ã = AL−1, x̃ = L x
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Ill-posed inverse problems, regularization, preconditioning

Preconditioning for Ill-Posed Inverse Problems

Purpose of preconditioning:

not to improve the condition number of the iteration matrix

instead, preconditioning ensures the iteration vector lies in the
“correct” subspace

P. C. Hansen.
Rank-deficient and discrete ill-posed problems.
SIAM, 1997.

M. Hanke and P. C. Hansen.
Regularization methods for large-scale problems.
Surv. Math. Ind., 3 (1993), pp. 253–315.

Question: How to extend ideas to more general/complicated
regularization?
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Ill-posed inverse problems, regularization, preconditioning

Other Regularization Methods

In this talk we focus on solving

min
x
‖b − Ax‖2

2 + λR(x)

where

R(x) = ‖x‖pp =
∑
|xi |p , p ≥ 1

For example,

p = 2 is standard Tikhonov regularization
p = 1 enforces sparsity

or

R(x) =

∥∥∥∥√(Dhx)2 + (Dvx)2

∥∥∥∥
1

(Total Variation)
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Related previous work

Many Previous Works ...
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Y. Huang, M.K. Ng, and Y.-W. Wen.
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Related Previous Work
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Related previous work

Iteratively Reweighted Norm Approach (Wohlberg, Rodŕıguez)

Iteratively construct Lm so that ‖Lmx‖2
2 ≈ R(x), and compute

xm = arg min
x
‖b − Ax‖2

2 + λm‖Lmx‖2
2

R(x) = ‖x‖1

Lm = diag

(
1√
|xm−1|

)
= diag(1 ./ sqrt(abs(xm−1)))

R(x) = TV (x)= ‖
√

(Dhx)2 + (Dvx)2‖1,

Lm = SmDhvwhere

D =

 1 −1
. . .

. . .

1 −1

∈ R(n−1)×n, Dhv=

(
Dh

Dv

)
=

(
D ⊗ In
In ⊗ D

)

x̃m−1 =Dhvxm−1, S̃m=diag

 1

4

√∑2(N−n)
i=1 (x̃m−1)i

, Sm=

(
S̃m 0

0 S̃m

)
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Related previous work

Krylov Subspace Methods for Tikhonov Regularization

Our approach: Similar to Wholberg and Rodriguez, combined with ideas in:

D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari.
Tikhonov regularization and the L-curve for large discrete ill-posed problems.
J. Comput. Appl. Math., 123:423–446, 2000.

M. Hochstenbach and L. Reichel.
An iterative method for Tikhonov regularization with a general linear regularization
operator.
J. Integral Equations Appl., 22:463–480, 2010.

L. Reichel, F. Sgallari, and Q. Ye.
Tikhonov regularization based on generalized Krylov subspace methods.
Appl. Numer. Math., 62:1215–1228, 2012.

S. Gazzola and P. Novati.
Automatic parameter setting for Arnoldi-Tikhonov methods.
Submitted.

Iterative Krylov Subspace Methods for Sparse Reconstruction S. Gazzola, J. Nagy



Our approach to solve the problem

Generalized Arnoldi-Tikhonov (GAT) Method

Iteratively construct Lm so that ‖Lmx‖2
2 ≈ R(x), and compute

xm = arg min
x
‖b − Ax‖2

2 + λm‖Lmx‖2
2

Expensive if A is large, and many iteration steps (m) are needed.

Our approach: Iteratively project problem onto Krylov subspace,

Km(A, b) = span{b,Ab, . . . ,Am−1b}

Get approximate solution by solving projected problem:

xm = arg min
x∈Km

‖b − Ax‖2
2 + λm‖Lmx‖2

2

Easier to solve projected problem.
As subspace grows (more iterations), get better approximations.
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Our approach to solve the problem

Generalized Arnoldi-Tikhonov (GAT) Method

If Lm = L remains constant, then to solve projected problem,

xm = arg min
x∈Km

‖b − Ax‖2
2 + λ‖Lx‖2

2

we need to construct an orthonormal basis {v1, . . . , vm} for Km.

This can be done by the Arnoldi Algorithm, which computes:

Vm = [v1 · · · vm], v1 = b/‖b‖2

Hm is upper Hessenberg
AVm = Vm+1Hm

xm ∈ Km ⇒ xm = Vmy

So we now need to find y from

min
y
‖AVmy − b‖2

2 + λm‖LVmy‖2
2
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Our approach to solve the problem

Generalized Arnoldi-Tikhonov (GAT) Method

The Arnoldi algorithm gives

orthogonal property of Vm,

the relation AVm = Vm+1Hm,

and v1 = b/‖b‖2 ⇒ b = ‖b‖2Vme1

ym = arg min
y
‖AVmy − b‖2

2 + λm‖LVmy‖2
2

= arg min
y
‖Vm+1Hmy − ‖b‖2Vm+1e1‖2

2 + λm‖LVmy‖2
2

= arg min
y
‖Vm+1 (Hmy − ‖b‖2e1) ‖2

2 + λm‖LVmy‖2
2

= arg min
y
‖Hmy − b̂‖2

2 + λm‖LVmy‖2
2

= arg min
y

∥∥∥∥[ Hm√
λmLVm

]
y −

[
b̂
0

]∥∥∥∥2

2

λm can be estimated in a smart way – see work by Gazzola and Novati.
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Our approach to solve the problem

Modifying Krylov Subspace Projection Method

Our previous explanation of projection method assumed Lm = L.

That is, L did not change at each iteration.

If Lm is changing at each iteration, need to use “Flexible” Krylov
subspace methods; see, for example

Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition,
SIAM, Philadelphia, 2003.

Implementation details get tedious, so we skip these.
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Our approach to solve the problem

First Example - Star Cluster

0 20 40 60 80 100
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0

Stopping Iteration: 23 λ̃ = 1.1976 · 10−4.
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Our approach to solve the problem

Restarting Strategy

For sparse reconstruction, Lm is diagonal ⇒ it is easy to invert.

In the Total Variation case,

Lm = SmDhv

is complicated, and not easy to invert.

If Lm is not easy to invert, cost per iteration increases dramatically.

So, we incorporate a restart strategy:

Restart when discrepancy principle is satisfied
(residual reaches noise level).

Apply Lm at each restart.

Can also enforce nonnegativity with each restart.
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Our approach to solve the problem

Second Example - Satellite
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Our approach to solve the problem

First Algorithm Revised

Including Flexible-AT approach into the Restarting-Nonnegative scheme
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Our approach to solve the problem

Comparison with other methods: Sparse Reconstructions
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AT: Standard Tikhonov regularization
SpaRSA: Wright, Nowak, Figueiredo, 2007
TwIST: Bioucas-Dias, Figueiredo, 2009
l1 ls: Kim, Koh, Lustig, Boyd, Gorinvesky, 2007
IRN-BPDN: Rodŕıguez, Wohlberg, 2009
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Our approach to solve the problem

Comparison with other method: Sparse Reconstructions

Method Relative Error Iterations Total Time Average Time

SpaRSA 2.2365 · 10−2 94 24.76 0.26

NESTA 1.7800 · 10−2 248 306.17 1.23

TwIST 1.1089 · 10−2 104 28.02 0.27

l1 ls 2.2257 · 10−2 298 683.55 2.29

IRN-BPDN 2.2294 · 10−2 103 35.72 0.35

AT 1.8512 · 10−2 12 0.91 0.08

RR-AT 1.9171 · 10−2 18 3.77 0.21

Flexi-AT 1.1345 · 10−2 23 2.44 0.11

ReSt-GAT 1.1033 · 10−2 51 5.95 0.12

NN-ReSt-GAT 3.7530 · 10−3 60 6.25 0.10

AT: Standard Tikhonov regularization
SpaRSA: Wright, Nowak, Figueiredo, 2007
NESTA: Becker, Bobin, Candès, 2011
TwIST: Bioucas-Dias, Figueiredo, 2009
l1 ls: Kim, Koh, Lustig, Boyd, Gorinvesky, 2007
IRN-BPDN: Rodŕıguez, Wohlberg, 2009
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Our approach to solve the problem

Comparison with other methods: TV Reconstructions
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aMM-TV: Oliveira, Bioucas-Dias, Figueiredo, 2009
iRN-TV: Rodŕıguez, Wohlberg, 2006
NESTA: Becker, Bobin, Candès, 2011
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Our approach to solve the problem

Comparison with other method: TV Reconstructions

Method Relative Error Iterations Total Time Average Time

aMM-TV 2.7056 · 10−1 1025 2159.35 2.10

IRN-TV 3.2141 · 10−1 190 14.67 0.08

NESTA 2.8382 · 10−1 887 69.57 0.08

ReSt-GAT 3.4138 · 10−1 108 12.87 0.12

NN-ReSt-TV 3.0556 · 10−1 110 13.37 0.12

AT 3.4176 · 10−1 9 0.34 0.04

GAT 3.4809 · 10−1 9 0.70 0.08

RR-AT 3.5321 · 10−1 14 1.39 0.10

aMM-TV: Oliveira, Bioucas-Dias, Figueiredo, 2009
IRN-TV: Rodŕıguez, Wohlberg, 2006
NESTA: Becker, Bobin, Candès, 2011
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Concluding Remarks

Concluding Remarks

Preconditioning (on the right) for ill-posed inverse problems:

Not used to improve condition number.
Used to regularize solution.

Simple and efficient Krylov subspace methods for R(x) = ‖Lx‖2
2

can be adapted to:

Sparse (‖ · ‖1) or TV regularization.

Requires flexible Krylov subspace framework.

Can incorporate regularization parameter choice methods and
stopping criteria.

Restarting may be needed, but can be useful when
enforcing projection constraints (e.g., nonnegativity).
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A Bob Plemmons Story

Once upon a time, the computer was born ...
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A Bob Plemmons Story

With the computer, then came ...
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A Bob Plemmons Story

and the story continues, with many collaborators ...
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A Bob Plemmons Story

and recognition by his peers ...
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A Bob Plemmons Story

One notable time in this tale: 15 years ago

LINEAR ALGEBRA:
THEORY, APPLICATIONS, AND COMPUTATIONS

A Conference in Honor of
Robert J. Plemmons

On the Occasion of His 60th Birthday
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A Bob Plemmons Story

One notable time in this tale: 15 years ago

LINEAR ALGEBRA:
THEORY, APPLICATIONS, AND COMPUTATIONS

A Conference in Honor of
Robert J. Plemmons

On the Occasion of His 60th Birthday

55 participants, including
Avi Berman Moody Chu
Mike Berry Misha Kilmer
Raymond Chan Jim Nagy
Tony Chan Michael Ng
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A Bob Plemmons Story

One notable time in this tale: 15 years ago

60th Birthday Conference program included the following:

... each of us has been greatly influenced not only by his
scientific contributions, but also by his kindness and extreme
generosity.
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It is our pleasure to be part of this special event to honor our
teacher, mentor, colleague and friend, Professor
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A Bob Plemmons Story

One notable time in this tale: 15 years ago

60th Birthday Conference program included the following:

... each of us has been greatly influenced not only by his
scientific contributions, but also by his kindness and extreme
generosity.

It is our pleasure to be part of this special event to honor our
teacher, mentor, colleague and friend, Professor
Robert J. Plemmons.

Thanks to Raymond, Ronald and Michael for giving us an opportunity to
once again express our gratitude, admiration, and deep respect for Bob!
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A Bob Plemmons Story

And he lived happily ever after!
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